Extensions 1→N→G→Q→1 with N=C3 and Q=C33×C6

Direct product G=N×Q with N=C3 and Q=C33×C6
dρLabelID
C34×C6486C3^4xC6486,261

Semidirect products G=N:Q with N=C3 and Q=C33×C6
extensionφ:Q→Aut NdρLabelID
C3⋊(C33×C6) = S3×C34φ: C33×C6/C34C2 ⊆ Aut C3162C3:(C3^3xC6)486,256

Non-split extensions G=N.Q with N=C3 and Q=C33×C6
extensionφ:Q→Aut NdρLabelID
C3.1(C33×C6) = C3×C6×He3central stem extension (φ=1)162C3.1(C3^3xC6)486,251
C3.2(C33×C6) = C3×C6×3- 1+2central stem extension (φ=1)162C3.2(C3^3xC6)486,252
C3.3(C33×C6) = C6×C9○He3central stem extension (φ=1)162C3.3(C3^3xC6)486,253
C3.4(C33×C6) = C2×3+ 1+4central stem extension (φ=1)549C3.4(C3^3xC6)486,254
C3.5(C33×C6) = C2×3- 1+4central stem extension (φ=1)549C3.5(C3^3xC6)486,255

׿
×
𝔽